
The Pleodata Language and Representation

Alexander Gray Benjamin Bornstein Eric Mjolsness

December 21, 1999

Last updated: 12/21/99 BB
Copyright 1999, Jet Propulsion Laboratory, California Institute of Technology.

1 Introduction
Pleodata (Pleomorphic Data) is a markup language developed and used by the MLS group. It is
primarily used to represent data. Because it is defined very generally, however, it can be used to
represent almost anything. Other current and planned uses of Pleodata include representation of
models of data, abstract algorithms, and software. It is related to existing languages such as XML,
though it has different emphases.

1.1 Pleodata Files
To understand Pleodata, think of a text file containing data. Here's an example of such a file:

< mineral &Minerall
o the r in fo = "Test Line"
s p e c t r a = &Spectrum1

>
< spectrum &Spectrum1

spectraname = "VISIBLE"
numpoints = 5
datamatrix = (0 .0 1 . 0

1 .0 0 . 5
2 .0 0 . 2
3 . 0 0 .1
4 . 0 0.05) >

>

This data file contains textual representations of two Pleodata objects, a mineral and its spectrum.
These data can be said to be self-describing, in the sense that the numbers and strings that form the
parts of a mineral datum are annotated with the additional information indicating that structure.
It is a departure from the usual table-formatted data found in relational databases, in which the
annotations which describe the nature of each column and row in the table are stored separately
from the data themselves.

Note that the mineral object has a name, '&Minerall', which we call the object ID. An object's
name can be used to have one object point to another, or refer to another without defining it on
the spot. This allows the Pleodata data file to describe an interlinked collection of data, thereby
conveying additional information about how they are related.

An alternate Pleodata form for the same data is:

< mineral &Minerall
o the r in fo = "Test Line''
s p e c t r a =

1

< spectrum
spectraname = "VISIBLE"
numpoints = 5
datamatr ix = (0 .0 1 .0

1 .0 0.5
2 .0 0 .2
3.0 0 .1
4.0 0.05) >

>

Here we've defined the spectrum in place, which might be more convenient in some situations. We
also decided not to name the spectrum object, since we don't anticipate any need to reference it in
the future.

1.2 Pleodata Internal Structures
The name 'Pleodata' refers to both a text representation (Pleodata f i les) and an internal memory
representation (Pleodata objects or structures) . A program which is to operate upon the data encoded
in a Pleodata file must have an internal representation of some sort, such as Matlab's matrices or a
C program's data structures. This is usually very specific to the type of data expected. The author
of a program that wishes to read in Pleodata files faces the task of translating the Pleodata files
into those application-specific internal structures.

To make this easier, there is an abstract Pleodata internal representation which can be used as
an intermediary: First a Pleodata file is parsed into this internal representation, then the program
may manipulate the data as desired, e.g. translate each Pleodata internal object into an application-
specific object.

A Pleodata file is a linked list of object instances. Each instance contains a linked list of argumen t s
or fields. Finally, each argument contains a linked list of values. The simple file

< t h i n g
paraml = 2 .1
param2 = 9 .0

>
< t h i n g

paraml = 2 .3
param2 = (8 .7 10.5)

>

can be shown schematically as:

i n s t (" th ing")
I \
I arg ("paraml") --> a rg ("param2")
I \ \
I va l (2 . I) v a l (9 .0)

V

i n s t (" t h i n g ")
\

arg ("paraml") --> a rg ("param2")
\ \
va l (2 .3) va l (8 .7) --> va l (10.5)

Showing the additional detail of the nodes of the various linked lists, we have:

o- inst (" thing")
I \
I o""""""""- >O">*

2

I I I
I a rg ("paraml") arg ("param2")
I \ \
I O">* O">*

I I I
I v a l (2 . 1) v a l (9 .0)

V

o- inst (" thing")
I \

* I I
V o""""""""- >O">*

a r g ("parami") arg ("param2")
\ \

O">* 0"""""- O">*

I I I
v a l (2 .3) va l (8 . 7) v a l (10.5)

Pleodata allows one other basic structural capability, the idea of nested values. The file

< t h i n g
paraml = 2 . 3
param2 = (5 (8 . 7 10.5))

>

would be represented internally as

o- inst (" thing")
I \

* I I
V o""""""""- >O">*

a r g ("parami") arg ("param2")
\ \

O">* 0"""""- O">*

I I I
va l (2 .3) v a l (8 . 7) v a l [l ist of values]

\
0"""""- O">*

I I
v a l (8 . 7) v a l (10.5)

2 Goals and Principles
The main goals and principles of Pleodata are:

2.1 Representational Generality
It should be clear that this type of representation is quite general and able to describe many diverse
types of data, including things that might not normally be thought of as 'data'. Other current and
planned uses of Pleodata include representation of models of data, abstract algorithms, and software.

2.2 Data Format Interoperability
The representational generality of Pleodata makes it a natural choice for a common data format,
or lingua franca, for interoperation of different data-handling programs and software environments.
The simplest method for achieving such interoperation is to use Pleodata as the intermediary format
from and to which all formats of interested can be translated.

3

2.3 Object-Oriented Tools
The representational philosophy of Pleodata is exactly that of object-oriented databases and object-
oriented programming languages. This should allow smoother conceptual and practical usage of
these tools with data of interest.

3 Software and Examples
Pleodata parsers take Pleodata text files (usually denoted by the .pleo suffix) and create corre-
sponding internal memory structures. Pleodata generators take Pleodata memory structures and
create corresponding Pleodata text files. Pleodata editors allow input through a GUI for creation of
internal memory structures and/or text files.

Here is the set of existing Pleodata software and examples:

0 C Pleodata Parser Example
A pleo parser which reads in a Pleodata text file and creates corresponding Pleodata internal
structures in the C language can be found in:

That program prints new Pleodata text files, corresponding to its internal structures, demon-
strating the ability to go back and forth between text and memory Pleodata representations.
It is the most elementary example of using Pleodata. Note that every application using Pleo-
data internally must call the Pleodata parsing routines; that’s why this example exists, to
demonstrate how to use the Pleodata API. Includes sample input and output.

e C Pleodata Library
The C Parser is based on the C library

C / p l e o l i b

which contains all functions for parsing from Pleodata files, as well as manipulating, and
printing Pleodata structures.

e C Pleodata-to-Minerals Translator Example
This is a more realistic example, using Minerals (the data type for an actual geological appli-
cation) to show how applications with specific data formats can use the Pleodata represenata-
tions. It can be found in:

It shows how to read in a Pleodata text file, creating Pleodata internal structures, then creating
corresponding Mineral structures and printing out the data in a Mineral text format. Includes
sample input and output.

0 C Pleodata-based Application Example
This example is more realistic in the sense of a complex data analysis computation. It reads
data in Pleodata format, translates the data into its own internal structures, and performs
statistical mechanics-based clustering on the data. It can be found in:

C / s c l u s t

Includes sample input and output.

4

0 C++ Pleodata Parser Example
The C++ analog to the C Pleodata Parser can be found in:

C++/txt2pleocc

It is meant to do exactly what the C Pleodata Parser does, except that its internal structures
are actually C++ objects. The Pleodata objects are defined in part using the Standard
Template Library, as implemented by ObjectSpace’s SystemsiToolkiti. Includes sample input
and output.

0 C++ Pleodata Library
The C++ Parser is based on the C++ library

C/pleocclib

This library is meant to completely mirror the C Pleodata Library.

C++ Pleodata-to-Minerals Translator Example This is the C++ analog of the C
Pleodata-to-Minerals Translator Example, contained in:

Includes sample input and output.

0 Perl Pleodata Parser Example
The Perl parser can be found in:

per1

Includes sample input and output, including description of how to call it from C.

0 Java Pleodata Parser Example and Editor
The Java parser is combined with an interactive editor, which allows the user to change the
contents of a Pleodata file through a graphical user interface. The Java parser and editor can
be found in:

j ava/PleoEdit

Includes sample input and output.

XML-to-Pleodata Parser Example
This is an example of reading in XML text files and creating corresponding Pleodata internal
structures. It can be found in:

C/xml2pleo

Includes sample input and output. This shows an example of a DTD designed for an application-
specific subset of XML. The format for a document similar to a DTD, except describing an
application-specific subset of Pleodata has been defined. Software for converting between the
XML-DTD and the proposed ’Pleodata-DTD’ is under development.

5

4 Language Spec
It is important that all implementations of Pleodata parsers and generators follow the following
specification of the Pleodata language so that consistency is maintained. A language specification
for Pleodata is defined by the following grammar:

INSTANCES --> INSTANCES INSTANCE I
INSTANCES COMMENT
INSTANCE I

INSTANCE --> < TYPENAME OBJECTID ARGUMENTS > I
< TYPENAME OBJECTID > I
< p leo OBJECTID ARGUMENTS >

TYPENAME --> NAMESTRING
OBJECTID --> OIDSTRING I

n u l l
ARGUMENTS --> ARGUMENTS ARGUMENT I

ARGUMENT
ARGUMENT --> ARGNAME = VALUE
ARGNAME --> NAMESTRING
VALUE --> OIDSTRING I

STRINGVAR I
INTVAR I
FLOATVAR I
DOUBLEVAR I
INSTANCE I
(VALUES)

VALUES --> VALUES VALUE I
VALUE

COMMENT --> COMMENTSTRING

The 'pleo' keyword may consist of any mixture of upper and lower case. OIDSTRING is (almost)
any string beginning with I&'. NAMESTRING is (almost) any string not beginning with a number
and not beginning with '&I . STRINGVAR is (almost) anything between any pair of quotations (',
', or ' I) . INTVAR is any integer. FLOATVAR is any floating point number. DOUBLEVAR is any
floating point number immediately followed by 'd' or ID'. A COMMENT is denoted by ' # I at the
beginning of a line; it is ignored by the parser.

The first line of a Pleodata file can have the special form

< p leo syntax-s ty le = STRINGVAR vers ion = FLOATVAR homeinst = STRINGVAR >

indicating the Pleodata syntax-style and version, and optionally the home institution where the
Pleodata was generated.

More exact definitions are given in terms of the precise regular expressions used in the scanning
phase of the C Pleodata parser, found in pleo-parse-tuple-v2.1 in /proj/code/c/pleo.

5 Internal Representation
The set of data structures used for all of the Pleodata parsers to date is described abstractly in the
introduction. Its actual implementation is captured by the following excerpt from p leo -u t i1 . h:

/* ins tance */
struct PLEO-instance-struct c

char *type-name; /* s t r i n g name of ob jec t type */
char *object- id; /* s t r i n g name of t h i s i n s t a n c e */
s t ruct PLEO-l is t -s t ruct *arguments; /* l i s t of arguments , or arg s t ructs */

> ;

6

/* a r g */
s t r u c t PLEO-arg-struct {

char *arg-name ; /* s t r i n g name of argument type */
s t ruct PLEO-l is t -s t ruct *values; /* l i s t of va lues , o r va l s t ruc tu res */

3 ;

/* v a l */
s t r u c t PLEO-Val-struct {

i n t t y p e ; /*
struct PLED-instance-struct *instance; /*

char *aid-Val; /*
char *str ing-val ; /*
union c
i n t i n t - V a l ; /*
f l o a t f l o a t - V a l ; /*
double double-Val; /*

s t ruct PLEO-l is t -s t ruct *array-Val; /*
3 numeric;

3 ;

code fo r va lue ' s t ype */
s e t t i n g i f t y p e is an instance
or an oid */
s e t t i n g i f t y p e i s an oid */
s e t t i n g i f t y p e i s s t r i n g */

s e t t i n g i f t y p e i s i n t */
s e t t i n g i f t y p e i s f l o a t */
s e t t i n g i f t y p e i s double */

s e t t i n g i f t y p e i s ar ray */

6 Programming API
Manipulation of internal Pleodata structures is accomplished though the Pleodata API (application
programming interface):

P l eo U t i l i t y Func t ions
(f u n c t i o n s t h a t a s s i s t i n reading/creating/writing/searching pleo C s t r u c t u r e s)

Pleo Pars ing:
-"""""-

PLEO-PARSE-INIT
Set up va r i ab le s fo r pa r s ing .
i n t PLEO-parse-init (in t the-syntax-s ty le , FILE* in-fp)

PLEO-PARSE
Parse a P l e o t e x t f i l e , by ca l l ing the appropr ia te f lex /b ison-genera ted parse
func t ion .
i n t PLEO-parse()

PLEO-CONNECT-INSTANCE-PTRS
Traverse a l i s t of PLEO-instances, connecting O I D (object ID) p o i n t e r s t o
PLEO-instances within the l i s t .
Note t h a t t h i s r o u t i n e e x p e c t s a f l a t l i s t of a l l i n s t a n c e s , n o t one i n which
some ins t ances a r e no t i n t he main backbone of t h e l i s t .
P L E O - l i s t *PLEO-connect-instance-ptrs(PLEO-l i s t * the- ins tance- l i s t

Constructors :

PLEO-START-LIST
Make a new l ist , s t a r t i n g w i t h a specif ied e lement as the head. Returns the

7

l i s t .
P L E O - l i s t *PLEO-start-list (vo id * the-e lement , in t l i s t - type)

PLEO-MAKE-LIST
Allocate a new, empty P L E D - l i s t s t r u c t u r e .
P L E O - l i s t *PLEO-make-list ()

PLEO-MAKE-INSTANCE
Allocate a new, empty PLEO-instance s t r u c t u r e .
PLEO-instance *PLEO-make-instance ()

PLEO-MAKE-ARG
Allocate a new, empty PLEO-arg s t r u c t u r e .
PLEO-arg *PLEO-make-arg ()

PLEO-MAKE-VAL
Allocate a new, empty PLEO-val s t r u c t u r e .
PLEO-val *PLEO-make-val ()

PLEO-APPEND-TO-LIST
Add an element t o a l i s t of ob jec ts . Re turns the l i s t .
P L E O - l i s t *PLEO-append-to-list (void *the-element, P L E O - l i s t * t h e - l i s t

(We need more f u n c t i o n s h e r e t o make it simpler & more d i r e c t t o c o n s t r u c t
p l eo s t ruc tu res f rom appl ica t ion-spec i f ic s t ruc tures . This i s cu r ren t ly
under development.)

Pleo Output:
""-"""

PLEO-WRITE-INSTANCE
Write the con ten t s of a
OID's.
i n t PLEO-write-instance

PLEO-WRITE-LIST
Write a list t o a f i l e .

PLEO-instance s t r u c t u r e t o a f i l e . Does not expand

(char *file-name, PLEO-instance *the- instance,
char *mode)

Does not expand OID's.
i n t PLEO-write-list (char *f ile-name, PLEO-l i s t * the - l i s t , cha r *mode)

PLEO-PRINT-INSTANCE
P r i n t t h e c o n t e n t s of a PLEO-instance s t r u c t u r e t o a stream.
int PLEO-print-instance (FILE *stream, PLEO-instance *the- instance)

PLEO-PRINT-INSTANCE-EXPAND
P r i n t t h e c o n t e n t s of a PLEO-instance s t r u c t u r e t o a stream, expanding DID'S
i n t o t h e i r f u l l i n s t a n c e f o r m .
i n t PLEO-print-instance-expand (FILE *stream, PLEO-instance *the- instance

PLEO-PRINT-LIST
P r i n t a l i s t t o a stream.
int PLEO-print-l ist (FILE *stream, P L E O - l i s t * t h e - l i s t

PLEO-PRINT-LIST-EXPAND

8

P r i n t a l i s t t o a stream, expanding D I D ' S i n t o t h e i r f u l l i n s t a n c e f o r m .
i n t PLED-print-list-expand (FILE *stream, PLED-l i s t * t h e - l i s t)

Pleo Search Functions:
"""""""-""--

PLED-FIND-INSTANCE-NAMED
Return the PLED-instance in a l i s t of ins tances tha t matches the spec i f ied
o b j e c t i d .
PLED-instance *PLED-find-instance-named(P L E D - l i s t * the - ins t ance - l i s t ,

char* object-id)

PLED-RFIND-INSTANCE-NAMED
Return the PLEO-instance contained in a l i s t of i n s t ances o r t he i r ch i ld ren
(i . e , , r e c u r s i v e f i n d) t h a t matches the spec i f ied ob jec t id .
PLEO-instance *PLEO-rfind-instance-named(PLED-l i s t * the - ins t ance - l i s t ,

char* object-id)

PLEO-RFIND-ARG-NAMED
Return the PLED-arg con ta ined i n a l i s t of a r g s o r t h e i r c h i l d r e n (i . e . ,
recursive f ind) that matches the specif ied argument name.
The ins tance l i s t def ines the scope of unconnected D I D searches. (Note:
D I D searches are not needed for D I D types that have "connected" instance
pointers , e .g . an instance produced via pars ing a p l e o t e x t f i l e .) I f
t h e i n s t a n c e l i s t is NULL the func t ion will n o t t r y t o r e c u r s e on unconnected
D I D type values .
PLED-arg *PLED-rfind-arg-named(P L E O - l i s t *the-arg-list , char* arg-name,

P L E O - l i s t * the- ins tance- l i s t)

PLED-RFIND-INSTANCE-TYPE-IN-LIST
Return the PLED-instance contained in a l i s t of i n s t ances o r t he i r ch i ld ren
(i . e . , r e c u r s i v e f i n d) t h a t matches the specif ied instance type name.
PLED-instance *PLEO-rfind-instance-type-in-list(PLEO-l i s t * the - ins t ance - l i s t ,

char* type-name

PLED-RFIND-INSTANCE-TYPE
R e t u r n t h e f i r s t PLED-instance contained in a l i s t of i n s t a n c e s o r t h e i r
chi ldren instances (recursive f ind) that matches the specif ied instance type
name.
The ins tance list def ines the scope of unconnected D I D searches. (Note:
D I D searches are not needed for D I D t y p e s t h a t have "connected" instance
pointers , e .g . an instance produced via pars ing a p l e o t e x t f i l e .) I f
t he i n s t ance l i s t is NULL the func t ion will n o t t r y t o r e c u r s e on unconnected
D I D type va lues .
PLED-instance *PLED-rfind-instance-type(PLED-instance *the- instance,

char* type-name,
P L E D - l i s t * the- ins tance- l i s t

PLED-COPY-ARG-VAL
Locates pleo argument (f ield) by name in t he g iven p l eo i n s t ance , and copies

9

t h e v a l u e i n t o d e s t i n a t i o n a f t e r c a s t i n g . The value and des t ina t ion t ypes
must match. Returns ERROR i f named argument i s not found, or if the argument
and des t ina t ion va lue t ypes do not match.
i n t PLEO-copy-arg-val (char *arg-name, int dest-Val-type,

PLEO-instance *the-instance, void *dest)

PLEO-EXTRACT-TWOD-ARRAY
Recurs ive ly searches ins tance for an ins tance of type twod-array, then
cop ie s t he con ten t s of t h e p l e o i n t o a newly a l loca ted 2-D data-array
of f l o a t s . The instance "twod-array" should have "rows", "columns"
and "values" arguments (f ields) .
i n t PLEO-extract-twod-array (PLEO-instance *the-instance,

f loa t ***data-ar ray , in t * rows , in t *cols)

PLEO-OID-IS-CONNECTED
Return I of t h i s p l eo va lue i s an O I D and the ins tance po in te r has been
connected (resolved), and 0 otherwise. This will g e n e r a l l y r e t u r n t r u e
f o r i n s t a n c e s i n a l i s t t h a t was run through PLEO-connect-instance-ptrso.
i n t PLEO-oid-is-connected (PLEO-val *the-Val)

The API is currently undergoing a design iteration and some changes are very likely in the near
term.

7 Status
Pleodata is still an evolving entity. As working data analysis systems are being built using Pleodata,
its capabilities are likely to be extended and more software to manipulate Pleodata and use it
as a translation base is likely to be built. As reliance on Pleodata increases] however, both by
system builders within the MLS group and by collaborators, radical backward-incompatible changes
shouldn't be expected. This document is intended to describe the very latest state of Pleodata.

Pleodata's user base currently includes:

0 GRN Computational Biology Project (MLS)

0 Chris Hart (Caltech Biology Dept.)

0 Wolfgang Fink (Caltech Physics Dept.)

8 Misc. Notes
1. Pleodata used to be called 'Glu'. This is now outdated.

9 People and History
Pleodata began with preliminary design work by Eric Mjolsness. Alex Gray wrote the first Pleodata
library and parsers based on it, in C and C++ versions, and examples of their use and is the original
author of this document. Eric wrote the first Per1 parser. Ben Bornstein wrote the first Java
parser and editor. Tobias Mann, Becky Castano, and Joe Roden helped refine and make Pleodata
a reality by using Pleodata for real data analysis tasks. Vlad Gluzman and Alex extended Pleodata
to allow nested lists of values. Vlad wrote an XML-to-Pleodata parser. Based on suggestions by
Mike Turmon and others, Joe extended the Pleodata manipulation API.

10

10 Contact
Eric Mjolsness emj@aig.jpl.nasa.gov

11

mailto:emj@aig.jpl.nasa.gov

